
Annual Review of Control, Robotics, and
Autonomous Systems

Sequential Monte Carlo:
A Unified Review
Adrian G.Wills1 and Thomas B. Schön2

1School of Engineering, University of Newcastle, Callaghan, New South Wales, Australia;
email: adrian.wills@newcastle.edu.au
2Department of Information Technology, Uppsala University, Uppsala, Sweden

Annu. Rev. Control Robot. Auton. Syst. 2023.
6:159–82

First published as a Review in Advance on
January 9, 2023

The Annual Review of Control, Robotics, and
Autonomous Systems is online at
control.annualreviews.org

https://doi.org/10.1146/annurev-control-042920-
015119

Copyright © 2023 by the author(s). This work is
licensed under a Creative Commons Attribution 4.0
International License, which permits unrestricted
use, distribution, and reproduction in any medium,
provided the original author and source are credited.
See credit lines of images or other third-party
material in this article for license information.

Keywords

sequential Monte Carlo, particle filter, nonlinear state-space model, state
estimation, system identification

Abstract

Sequential Monte Carlo methods—also known as particle filters—offer ap-
proximate solutions to filtering problems for nonlinear state-space systems.
These filtering problems are notoriously difficult to solve in general due
to a lack of closed-form expressions and challenging expectation integrals.
The essential idea behind particle filters is to employ Monte Carlo integra-
tion techniques in order to ameliorate both of these challenges. This article
presents an intuitive introduction to the main particle filter ideas and then
unifies three commonly employed particle filtering algorithms. This unified
approach relies on a nonstandard presentation of the particle filter,which has
the advantage of highlighting precisely where the differences between these
algorithms stem from. Some relevant extensions and successful application
domains of the particle filter are also presented.
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1. INTRODUCTION

Decision-making in the presence of uncertainty is a fundamental aspect of our modern world. For
example, consider an autonomous car that is faced with an obstacle in its path. Assuming that it
is important to avoid colliding with obstacles, a decision is required to determine the best course
of action for the steering, braking, and acceleration. Importantly, these decisions must be made
without complete knowledge of the environment, the response of the vehicle, or even the location
and orientation of the car. Another example is the many decisions surrounding the best way to
manage a disease epidemic. These decisions are inevitably made without perfect knowledge of
their impact.

In any case, it is wise to consider any prior knowledge and available evidence when making
decisions. For example, using prior knowledge of vehicle dynamics and measurements from sen-
sors (such as GPS, lidar, radar, inertial measurement units, and cameras) has proven to be hugely
successful in autonomous vehicle applications (1). Similarly, dynamic models of disease spread
and infection rate measurements have been successfully combined to help predict outbreaks and
therefore allow decision makers to take evasive action (2).

In many important cases, new evidence is obtained sequentially. Therefore, it is also prudent
to repeat the decision-making process as the sequence evolves; otherwise, actions may lead to
devastating consequences. For example, forward-looking vehicle lidar measurements may indicate
the presence of an obstacle that was previously (in time) occluded from view. Ignoring this new
information may have catastrophic effects.

Combining prior knowledge with evidence that is revealed sequentially is the topic of this
article. In a general sense, these types of problems can be considered within a so-called filtering
framework. It is important to recognize that there are many different theoretical frameworks for
considering this filtering problem. This article is concerned with a probabilistic approach, where
tools from probability theory and statistics are used to describe levels of belief or uncertainty.

We will consider a general filtering problem that is expressed in so-called probabilistic state-
space form (3). In principle, the solution to this filtering problem is already known and relies on
the sequential use of Bayes’ rule, among other probabilistic identities. There are two fundamental
problems with this general solution: (a) It is impossible to obtain closed-form solutions in general,
and (b) the solution requires evaluation of potentially large-dimensional integrals.

Due to the importance of filtering and the difficulty associated with solving the general prob-
lem, enormous research attention has been directed toward various approximations. Inmany cases,
these approximations require implicitly or explicitly modifying the problem from its original form
in order to employ a particular approximation method (this essentially simplifies the integra-
tion problem). Two well-known examples include the extended Kalman filter (4) and unscented
Kalman filter (5) approaches. These approaches are very popular and attractive due to their per-
formance and low computational complexity. A potential drawback of these methods is that the
approximation accuracy cannot, in general, be arbitrarily improved.

This article reviews a popular alternative approximation where the problem remains unaltered
from its stated form and the approximation of the required integrals can be made arbitrarily accu-
rate. The key mechanism relies on Monte Carlo integration techniques, which are applicable to
a broad set of problems. Since the filtering problem requires a sequential update based on newly
available evidence, we employ a specialized form of Monte Carlo integration called sequential
Monte Carlo (SMC) methods. The SMC methods are also often called particle filters.

These ideas have their origins in works by Gordon et al. (6), Kitagawa (7), and Stewart &
McCarty (8), and there have been many relevant reviews (9–11) and important monographs (12–
16). Importantly, the efficacy of SMC methods has been demonstrated in many and disparate
situations, from autonomous vehicles (1) to disease modeling (17) to machine learning (18) to
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Figure 1

(a) A homodyne Michelson interferometer setup. (b) A schematic of the interferometer shown in panel a.
Abbreviations: BS, beam splitter; PBS, polarizing beam splitter; PD, photodetector. Figure adapted from
Reference 66 with permission from Petter Ersbo.

searching for the MH370 aircraft (19). This article is therefore not intended to argue the case
for SMC methods. Rather, we are interested in achieving two primary goals: First, we intend to
introduce the key ideas in an intuitive manner using a pedagogical example of estimating the
position and velocity of a target mirror using the interferometer apparatus shown in Figure 1a,
and second,we abstract from the particulars of this example and present the details of three popular
particle filters in a unified manner.

In particular, we use a nonstandard presentation of the particle filter in order to unify three
commonly used algorithms. This perspective highlights the different ways of employing Monte
Carlo integration and the impact of these choices within the filter.

The article is organized as follows. Section 2 presents a motivating example and the essential
ideas underlying the particle filter. Section 3 details the key technical ideas and a unifying frame-
work to consider several popular particle filtering variants. Section 4 shows how the particle filters
play an important role in other related fields and how they can be generalized to a broad class of
problems. Section 5 provides some concluding remarks. It is assumed that the reader has a ba-
sic working knowledge of probability theory and statistics, but for those who do not, potentially
helpful resources include books by Gut (20) and Gelman et al. (21).

2. A PEDAGOGICAL EXAMPLE

This section introduces the key principles and assumptions underlying SMC methods. To make
these ideas concrete, we introduce the essential components by way of a pedagogical example. It
is important to note that this example is intended for illustrative purposes and is not, in any way,
intended to represent state-of-the-art estimation in this case.

More specifically, we consider a problem of estimating the position and velocity of a moving
mirror using an interferometer apparatus (shown in Figure 1a). Interferometry dates back more
than 100 years and was vital in accurately measuring flatness, an essential ingredient in the devel-
opment of modern science and engineering (22). Perhaps the most famous interferometers today
are the two large instruments that form the Laser InterferometerGravitational-WaveObservatory
(LIGO). This apparatus was used in the 2015 verification of gravitational waves (23), for which
Rainer Weiss, Barry Barish, and Kip Thorne were awarded the 2017 Nobel Prize in Physics.
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The particular setup in Figure 1a is a homodyne Michelson interferometer that is commonly
used for very-high-precision displacement measurements (see, e.g., 24). These displacement mea-
surements have found application in many areas, including vibration measurement, gas flow
analysis, high-precision gyroscopes, and high-precision position control, to name just a few
(25).

The basic principle of interferometry is to use the wave properties of light to measure distance.
Splitting a coherent light source into two separate paths and then recombining them will generate
an interference pattern. Differences in the path length for the split light will produce changes in
the interference pattern, which is the observed quantity. That is, assuming a light wavelength of
λ, path-length differences that are integer multiples of λ result in constructive interference, which
results in high levels of measured light intensity. Fractional path-length differences result in lower
levels of measured light intensity, and fully destructive interference results in the lowest levels of
measured light intensity.

To make these ideas more concrete, the apparatus shown in Figure 1a can be represented by
the schematic in Figure 1b. The laser, with wavelength λ, provides a coherent light source that is
split in two using a beam splitter. The split light is then reflected by two separate mirrors, one that
is fixed (the top mirror, called the reference mirror) and one that is allowed to move (the rightmost
mirror, called the target mirror). The moving mirror then provides a time-dependent path-length
difference. Between the beam splitter and the target mirror is a wave plate, which adds a λ/8 phase
shift between the horizontal and vertical polarization directions of the light. This wave plate adds
the same phase shift on the returning light, for a total λ/4 phase shift between polarizations. The
polarizing beam splitter then splits the incident light depending on the polarization direction, and
the newly split light intensity is detected by the two photodetectors.

If we label the two measured intensities from the photodetectors as y1 and y2, then we can
model the measured signals as

y1 = α1 + β1 cos(κd ) + v1, 1.

y2 = α2 + β2 sin(κd ) + v2, 2.

where d is the position of the target mirror and κ�2π/λ. The sine and cosine terms stem from
the wave properties of light and the phase shift introduced by the wave plate. The parameters
α1,2 and β1,2 account for the offsets and gain terms of the measured intensities, respectively.
The noise terms v1,2 account for uncertainty in the measured intensity. Figure 2a shows a
segment of the measured light intensities for the simulated target mirror position shown in
Figure 3b, and Figure 2b shows a scatter plot of the measurements for the full data sequence.
(Figure 3a is further discussed below, and Figure 3b–d is further explained at the end of this
section.)

Assuming that the intensities can be measured at regular time intervals spaced� seconds apart,
we use the notation y1(k) and y2(k) to indicate the measured intensities at time instant k�, where
k is an integer and is called the discrete-time index. We can further collect these measurement at
index k in the so-called output variable yk, defined as

yk �
[
y1(k)
y2(k)

]
=

[
α1 + β1 cos(κd )
α2 + β2 sin(κd )

]
+ ek, ek �

[
v1(k)
v2(k)

]
. 3.

Given these intensity measurements, the aim is to estimate both the position d and the associated
velocity ḋ at each discrete-time index k.We can assume for simplicity that the accelerations causing
the mirror to move are unknown, and we can therefore model the discrete-time evolution of
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Figure 2

(a) Segment of measured light intensities. (b) Scatter plot of measured light intensities.

position and velocity via a simple kinematic, stochastic state-space model,[
d(k+ 1)
ḋ(k+ 1)

]
︸ ︷︷ ︸

�xk+1

=
[
1 �

0 1

][
d(k)
ḋ(k)

]
︸ ︷︷ ︸

�xk

+ ηk, 4.

where the implicit definition of xk is the so-called model state vector, and ηk is a random variable
used to model uncertainty in the state evolution model.

Restating the aim, we wish to estimate the state xk (the position and velocity of the target
mirror) given all the measurements y1:k � {y1, . . . , yk}. There are many ways to attack this, but
here we follow a probabilistic approach. The main idea is to model our belief of the state using a
probability density function. It is important to clarify that the actual position and velocity are not
uncertain; rather, it is our knowledge that is uncertain. In particular, we are interested in providing
a distribution of the state conditioned on all of the available data—that is, we seek to find

p(xk | y1:k ). 5.

It is perhaps not immediately clear how we can arrive at this distribution, which we now turn our
attention to.Suppose that our belief of the state at time k= 1,prior to obtaining anymeasurements,
can be described via the distribution

x1 ∼ p(x1). 6.

For example, suppose that we believe that p(x1) can be adequately modeled via a multivariate
normal distribution according to

p(x1) = N (x1; μ1,P1) = det(2πP1)−
1
2 e−

1
2 (x1−μ1 )T P−1

1 (x1−μ1 ), 7.

where μ1 is the mean and P1 is the covariance. The actual values employed for each depends on
prior knowledge. Figure 3a shows samples (also referred to as particles) from p(x1).

Then we are at time k= 1 provided with light intensity measurements y1, and we would like to
update our belief of the state—that is, we want p(x1 | y1). To this end, we can employ Bayes’ rule
to obtain

p(x1 | y1) = p(y1 | x1) p(x1)
p(y1)

. 8.
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Figure 3

(a) Initial samples (particles) xi1, shown as red x’s, drawn from a multivariate normal with mean μ1 = 0 and
covariance P1 = 1

4λ
2I2×2. Resampled particles based on y1 are shown as blue circles, where three vertical

bands are roughly λ distance apart. (b) Simulated (true) target mirror position (solid red line), the mean
position estimate from an unscented Kalman filter (UKF) (dashed black line), and the mean position estimate
from the particle filter (PF) (solid blue line). The transient is shown in panel c. (c) Simulated (true) target
mirror position (solid red line), UKF mean estimate (dashed black line), and PF mean estimate (particles shown
as blue dots), showing more detail at the start of the simulation. (d) Simulated (true) target mirror velocity
(solid red line), UKF mean estimate (dashed black line), and PF mean estimate (particle mean shown as a solid
blue line), again showing more detail at the start of the simulation.

For this to be useful, we need to consider each of the distributions on the right-hand side. We
start by noting that the denominator term p(y1) is a normalizing constant that ensures a proper
density function, and it may be safely ignored for now. Concerning p(x1), notice that this is the
prior distribution available in Equation 7. We now concentrate on p(y1 | x1), which describes our
belief of the measurements y1 given the state. This is a fundamentally important object, known as
the measurement likelihood model, relating the state to the measurements.

We already have such a relationship described in Equation 3, but it is not quite in the re-
quired probabilistic form p(y1 | x1). To remedy this, we will further assume a distribution for the
measurement noise term ek, which is independent over k and where for each k,

ek ∼ N (ek; 0,R). 9.

With this in place, we can then say that the distribution of y1 given x1 is multivariate normal via

p(y1 | x1) = N (yk; g(xk ),R) = det(2πR)−
1
2 e−

1
2 (y1−g(x1 ))TR−1(y1−g(x1 )), 10.
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where g(xk ) is defined as (refer to Equation 3)

g(xk ) =
[
α1 + β1 cos(κxk(1))
α2 + β2 sin(κxk(1))

]
, 11.

where xk(1) is used to indicate the position state at discrete-time index k. Put another way, we
believe that given the state x1, the measurements y1 are a realization from p(y1 | x1), and that if
the target mirror was fixed, then repeated measurements would just be different realizations from
p(y1 | x1).

In principle, with the measurement likelihood model in Equation 10 and prior in Equation 7
in place, we can describe the posterior p(x1 | y1) via Equation 8. At the same time, it is generally
not possible to express this posterior in closed form.1 A major benefit of SMC methods is that
they approximate the posterior using a finite number of terms. The essential idea is to represent
the filtered density p(x1 | y1) as an empirical distribution represented using a finite weighted sum
of point-mass distributions (Dirac delta functions),

p(x1 | y1) ≈
M∑
i=1

wi
1δ(x1 − xi1), 12.

where the locations of the pointmasses are determined by the so-called particles xi1.The associated
weight wi

1 represents the relative importance of the ith particle.
To be more specific, consider each of the M = 1,000 samples for the initial state x1 ∼ p(x1)

from Figure 3a. Intuitively, we can determine the importance of each particle xi1 by pretending
that the target mirror had this position and velocity and then generate a virtual measurement
using this state via Equation 11. This can then be compared with the actual measurement, where
strong agreement would result in high importance, and strong disagreement would result in low
importance.This comparison is neatly captured by our likelihoodmodel (Equation 10), which will
have larger values when y1 − g(xi1) is small and small values when y1 − g(xi1) is large. Therefore,
intuitively speaking, we could weight each of the particles by the following so-called importance
weight:

wi
1 � p(y1 | xi1). 13.

For the current example, Figure 3a also shows that 99.99% of the importance comes from just
30 particles. This indicates that most of the prior states are extremely unlikely, and we have ef-
fectively reduced our options to just 30 possibilities. Also note that the likely particles occur in
bands, spaced roughly λ distance in the position state, which stems from the cyclic nature of the
measurements.

Suppose, for the moment, that at time k = 2 we are presented with new light intensity mea-
surements y2 and wish to provide a distribution of the state x2 based on all the measurements so
far (i.e., y1, y2). That is, we seek

p(x2 | y1:2 ) = p(y2 | x2, y1) p(x2 | y1)
p(y2 | y1) , 14.

where the right-hand side again stems from application of Bayes’ rule. These distributions require
some discussion.The denominator term is again a normalizing constant and can be safely ignored.
The term p(y2 | x2, y1) is similar to the measurement likelihood previously defined but includes

1That is, in general, it is not possible to express the posterior using a finite number of elementary mathematical
operations and constants (6, 8).
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conditioning on y1. Intuitively, it may be argued that if the state x2 was given, then the current
intensity measurements y2 should not depend on previous measurements. This is often called a
conditional independence assumption and results from the Markov nature of state-space systems
(see, e.g., 3), where we assume that yk is conditionally independent of the past when given the state
xk—that is, we will henceforth assume that

p(yk | xk, y1:k−1) = p(yk | xk ). 15.

Considering the remaining term p(x2 | y1) from Equation 14, we have at our disposal the posterior
p(x1 | y1), which from the law of total probability affords

p(x2 | y1) =
∫
p(x2, x1 | y1) dx1 16.

=
∫
p(x2 | x1, y1) p(x1 | y1) dx1, 17.

where the second equality stems from an application of conditional probability. In principle,
p(x1 | y1) is already known via Equation 8. The remaining term, p(x2 | x1, y1), is a distribution of
the state at k= 2 given the previous state x1 and past measurements; this is another fundamentally
important distribution, known as the transition distribution. A commonly employed modeling as-
sumption is that xk is independent of past data given xk−1, and we say that xk satisfies the Markov
property (see, e.g., 3)—that is, we assume

p(xk | xk−1, y1:k−1) = p(xk | xk−1). 18.

Therefore, the distribution p(x2 | y1) (known as the prediction distribution since it involves
predicting the state based on previous data) can be expressed as

p(x2 | y1) =
∫
p(x2 | x1) p(x1 | y1) dx1. 19.

For the current example, the transition distribution p(x2 | x1) is amodel of the dynamic behavior
of the target mirror over the time interval between points k = 1 and k = 2.We already have such
a model in Equation 4, but again it is not in the required form p(x2 | x1). In a similar manner to
before, we remedy this by imposing an assumption on the distribution for ηk (the state noise);
specifically, we assume that

ηk ∼ N (ηk; 0,Q). 20.

With this in place, the distribution for xk+1 given xk is given by

p(xk+1 | xk ) = N (xk+1; f (xk ),Q), 21.

where f (xk ) is defined as (refer to Equation 4)

f (xk ) �
[
1 �

0 1

]
xk. 22.

In principle, we have all the terms required to provide the prediction distribution from
Equation 19. At the same time, we face the same challenge as before, in that we cannot express
this solution in closed form in general. We also face another challenge in that the integral is in-
tractable for even modest dimensions of xk (for a detailed discussion of these ideas, see 26, 27). A
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major benefit of the SMC approach is that it overcomes both of these problems. In essence, we
can simply substitute the approximation from Equation 12 into Equation 19 to reveal

p(x2 | y1) ≈
∫
p(x2 | x1)

M∑
i=1

wi
1δ(x1 − xi1) dx1

=
M∑
i=1

wi
1p(x2 | xi1). 23.

Therefore, the SMC approach results in an approximation of the prediction density that involves
a weighted combination of the transition model (i.e., our dynamics model for the target mirror).

Faced with a new measurement y2, we can in principle repeat the above process to arrive at an
approximation p(x3 | y1:2 ). More specifically, we note that

p(x3 | y1:2 ) =
∫
p(x3 | x2) p(x2 | y1:2 ) dx2 24.

and that the filter distribution p(x2 | y1:2 ) is given by Equation 14. Following a similar line of argu-
ment to the above discussion, we can see that the essential idea is to once again approximate this
filter distribution as

p(x2 | y1:2 ) ≈
M∑
i=1

wi
2δ(x2 − xi2), 25.

where the particles xi2 are this time samples from the prior xi2 ∼ p(x2 | y1) and the weights wi
2 are

defined as the likelihood p(y2 | xi2); this has the same interpretation as previously, in that particles
that are highly likely will have higher weight values and vice versa. Substitution of Equation 25
into Equation 24 reveals that

p(x3 | y1:2 ) ≈
∫
p(x3 | x2)

M∑
i=1

wi
2δ(x2 − xi2) dx2

=
M∑
i=1

wi
2p(x3 | xi2). 26.

These steps can be repeated for each new sample time k as new measurements yk become
available. It is important to remember that the above discussion is using finite sample approxima-
tions. Under some mild conditions (see Section 3.6), the resulting approximation is guaranteed to
converge to the true underlying distribution asM → ∞.

As a preview of the utility of this approach, using M = 1,000 particles and a variant of Algo-
rithm 1 [using the sequential importance resampling (SIR) choice], given in Section 3.4, results
in the position estimates shown in Figure 3b. For the purposes of simple comparison, an un-
scented Kalman filter estimate is also provided. Figure 3c,d provides more detail around the
start of the simulation, where the particle locations demonstrate the multimodal nature of the
state distribution; three regions of support are provided by the particles, each separated by a sin-
gle wavelength (refer to Figure 3a). Note that the unscented Kalman filter mean jumps several
wavelengths around the 40th sample, which is perfectly well supported by the measurements.

3. SEQUENTIAL MONTE CARLO: A UNIFIED APPROACH

The above discussion of the position estimation problem highlighted a number of key elements
when considering a probabilistic estimation approach.The first key element was that the quantities
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of interest at time k were collected into a vector xk ∈ R
nx , which is called the state. The second was

the availability of a belief about the state x1 prior to collecting any measurements (but possibly
conditioned on any other relevant knowledge of the problem). The third was the availability of a
measurement likelihood model that relates the state xk to the measurements yk. And finally, the
fourth was the availability of a state transition model that predicts the distribution of the state one
step into the future xk+1 based on knowledge of the current state xk.

In this section, we abstract from the particulars of this pedagogical example and return to it
when pertinent to do so.Our focus in this section is to consider the same type of problem from the
example—namely, that at time kwe seek the distribution of the state based on all the available data
so far. This is known as the Bayesian filtering problem for state-space models. Using slightly more
formal notation than in the example, the state at time index k is treated as a random variable and
denoted as Xk. We assume that the state evolves over time according to the following conditional
distribution (akin to the dynamic model from the example):

(Xk+1 |Xk = xk ) ∼ p(xk+1 | xk ). 27.

We note that this state transition model does not explicitly rely on inputs or other possibly impor-
tant knowledge. This is purely for ease of exposition, and the above model is allowed to depend
on inputs and other knowledge where appropriate.We further assume that the measured outputs
are a realization of the random variable Yk and that the state is related to Yk via the following
conditional distribution (the measurement likelihood model):

(Yk |Xk = xk ) ∼ p(yk | xk ). 28.

The so-called Bayes filter aims to provide the state distribution at time k conditioned on a
collection of output measurements y1:k � {y1, . . . , yk}. That is, the filter distribution is

(Xk |Y1:k = y1:k ) ∼ p(xk | y1:k ). 29.

This filtered distribution can be expressed using the measurement likelihood p(yk | xk ) and a prior
on Xk given the previous data y1:k−1 via2

p(xk | y1:k ) = p(yk | xk ) p(xk | y1:k−1)
p(yk | y1:k−1)

, 30.

where the distribution p(xk | y1:k−1) is known as the prediction distribution and describes the
distribution of the state given all measurements except yk—that is,

(Xk |Y1:k−1 = y1:k−1) ∼ p(xk | y1:k−1). 31.

This prediction distribution can also be linked to the previous filtered distribution and the state
transition model p(xk | xk−1) via3

p(xk | y1:k−1) =
∫
p(xk | xk−1) p(xk−1 | y1:k−1) dxk−1. 32.

The filtering and prediction stages can be combined to provide a recursion from one prediction
distribution to the next via

p(xk+1 | y1:k ) =
∫

p(yk | xk ) p(xk+1 | xk )
p(yk | y1:k−1)

p(xk | y1:k−1) dxk. 33.

Equation 33 serves as the central object throughout the remainder of this article.

2This relies on the Markov property of state-space systems and Bayes’ theorem.
3This relies on the law of total probability and the Markov property.
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Without loss of generality, we can assume that the initial state X1 is distributed according to a
finite mixture distribution:

X1 ∼ p(x1) �
M∑
i=1

wi
0 p(x1 | xi0), wi

0 ≥ 0,
M∑
i=1

wi
0 = 1. 34.

The distributions p(x1 | xi0) are allowed to depend on regular variables xi0, in case this is useful.
Furthermore, the distributions p(x1 | xi0) should not be confused with the state transition model
(although this is technically allowed and possibly useful in some circumstances). As a concrete
example, the prior from the interferometry example can be recovered with M = 1, w1

0 = 1, and
p(x1 | xi0) � p(x1). We note that this level of generality may not be warranted, but it does allow
for a parsimonious presentation of the various SMC methods without any special consideration
regarding the initial distribution.

Armed with the initial state distribution and presented with a single observation y1, the
application of the Bayes filter equations results in a prediction distribution p(x2 | y1) via4

p(x2 | y1) =
∫

p(x2 | x1) p(y1 | x1)
p(y1)

p(x1) dx1

≈
∫

p(x2 | x1) p(y1 | x1)
p(y1)

M∑
i=1

wi
0 p(x1 | xi0) dx1

=
M∑
i=1

∫
p(x2 | x1) p(y1 | x1)

p(y1)
wi

0 p(x1 | xi0) dx1. 35.

As mentioned previously, it is not generally possible to obtain closed-form solutions to the above
sum integral, except in some well-known and important cases (see, e.g., 13, 28).Therefore, we seek
instead to arrive at asymptotic solutions that exhibit convergence to the desired solution, with a
guaranteed convergence rate.

Toward this goal, the primary mechanism employed in SMCmethods relies on the law of large
numbers (LLN), often called Monte Carlo integration, whereby the sample mean converges to
the expected value:

lim
M→∞

1
M

M∑
i=1

f (zi ) →
∫

f (z)p(z)dz. 36.

The above assumes that zi ∼ p(z) are independent and identically distributed (i.i.d.) for i = 1, . . .
and that f (·) is a measurable function. In general, it may be difficult to sample directly from p(z)
but possible to evaluate it pointwise. If we suppose that it is instead straightforward to sample from
another distribution q(z), it follows under mild conditions that

lim
M→∞

1
M

M∑
i=1

f (zi )p(zi )
q(zi )

→
∫

f (z)p(z)
q(z)

q(z)dz =
∫

f (z)p(z)dz, 37.

where zi ∼ q(z) are i.i.d. Furthermore, and importantly, the LLN can be used to approximate
expectations for joint discrete–continuous random variables. Indeed,

lim
M→∞

1
M

M∑
i=1

f ( ji, zi )p( ji, zi )
q( ji, zi )

→
∑
j

∫
f ( j, z)p( j, z)

q( j, z)
q( j, z)dz =

∑
j

∫
f ( j, z)p( j, z)dz, 38.

where ( ji, zi ) are i.i.d. with the joint discrete–continuous distribution q( j, z).

4Here we have implicitly applied the monotone convergence theorem in order to exchange the order of
integration and summation for the last equality.
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The various incarnations of particle filters can all be explained by observing that each employs
the LLN to approximate various integrals and summations within the Bayes filter equations. As a
summary of what follows, all SMC methods considered in this article result in an approximation
of the prediction distribution in the form of a mixture,

p(xk+1 | y1:k ) ≈
M∑
i=1

wi
k p(xk+1 | xik ). 39.

Toward this result, in the subsequent sections we introduce the key ideas behind three popular par-
ticle filters and then discuss a unified algorithm that encapsulates all three. We remark that this
presentation is somewhat nonstandard in that our focus is directed toward the prediction distri-
bution rather than the filter p(xk | y1: k), which is more commonly discussed.Due to its importance,
we address the filter distribution following the discussion on various particle filter methods.

3.1. The Sequential Importance Sampling Particle Filter

The sequential importance sampling (SIS) particle filter has a long history in the field of Bayesian
filtering (29). In the framework of the current article, the essential idea behind the SIS approach
is to approximate the integral in

p(x2 | y1) =
M∑
i=1

∫
p(x2 | x1) p(y1 | x1)

p(y1)
wi

0 p(x1 | xi0)dx1 40.

for each i via Monte Carlo integration, but, importantly, using only a single sample.
We have a number of options at this point.We could draw a sample from p(x1 | xi0) (which is the

most common choice in the literature),5 or, as mentioned in the previous section (see Equations 37
and 38), it may be beneficial to draw a sample from a more general proposal distribution,

q(x1 | xi0, y1). 41.

It is important to reflect on this proposal for a moment. Notice that the proposal distribution
has the flexibility to be conditioned on the most recent observation y1; this flexibility can help in
proposing particles in more likely locations since we are allowed to use the most recent data. We
can therefore express the required sum integral as

p(x2 | y1) =
M∑
i=1

∫
p(x2 | x1) p(y1 | x1)

p(y1)
wi

0
p(x1 | xi0)

q(x1 | xi0, y1)
q(x1 | xi0, y1)dx1. 42.

The SIS particle filter approximates the above integral for each i using a single sample (also called
a particle) from a proposal distribution xi1 ∼ q(x1 | xi0, y1) in order to approximate∫

p(x2 | x1) p(y1 | x1)
p(y1)

wi
0 p(x1 | xi0)dx1 ≈ p(x2 | xi1) p(y1 | xi1)

p(y1)
p(xi1 | xi0)

q(xi1 | xi0, y1)
wi

0. 43.

This leads to the following approximation for the prediction distribution:

p(x2 | y1) ≈
M∑
i=1

p(x2 | xi1)
p(y1 | xi1)
p(y1)

p(xi1 | xi0)
q(x1 | xi0, y1)

wi
0︸ ︷︷ ︸

�w̃i
1

. 44.

5Reflecting on the interferometry problem from Section 2, we can see that this amounts to using the
multivariate normal distribution from Equation 21.
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Wenote that the above-definedweights6 w̃i
1 are not guaranteed to sum to one,which unfortunately

implies that the above approximation is not a proper distribution. A simple way to correct this is
to replace w̃i

1 with a new normalized weight, defined as

wi
1 �

w̃i
1∑M

j=1 w̃
j
1

, =⇒
M∑
i=1

wi
1 = 1. 45.

Here we notice that the action of normalizing removes the dependence on p(y1) since it cancels in
the fraction; we can therefore safely ignore this term.Combining Equation 44 and the normalized
weights in Equation 45 allows the prediction distribution p(x2 | y1) to be approximated by the
following mixture distribution:

p(x2 | y1) ≈
M∑
i=1

wi
1 p(x2 | xi1). 46.

It is important to highlight that themixture relies only onweightswi
1 and particles x

i
1. Interestingly,

our approximation of the prediction distribution is also a mixture distribution, which was the
assumed form for the prior p(x1) = ∑M

i=1 wi
0 p(x1 | xi0). Therefore, at least in principle, we could

replace the unknown prediction distribution with this approximation and repeat the above process.
To see this, note that the next prediction density p(x3 | y1:2 ) is given by

p(x3 | y1:2 ) =
∫

p(x3 | x2)p(y2 | x2)
p(y2 | y1) p(x2 | y1) dx2 47.

≈
M∑
i=1

∫
p(x3 | x2)p(y2 | x2)

p(y2 | y1) wi
1p(x2 | xi1) dx2, 48.

where the final approximation comes from substituting Equation 46 into Equation 47. This is
the same form as Equation 40, and we can therefore repeat the same reasoning to arrive at the
mixture

p(x3 | y1:2 ) ≈
M∑
i=1

wi
2 p(x3 | xi2). 49.

The sequential nature of using Monte Carlo integration in this way reveals the source of the term
sequential Monte Carlo. The SIS particle filter is summarized in Algorithm 1 (see Section 3.4)
with the SIS choice.

3.2. The Sequential Importance Resampling Particle Filter

A potential issue with the SIS approach is that employing only one sample for each i in the LLN
approximation generally leads to high variance in the estimate (i.e., a poor approximation). In
practice, the lack of particle diversity caused by using a single sample often means that the current
measurement is not well supported, and most (if not all) particles will be very unlikely. Since it is
typical that the variance is reduced as the number of samples increases, we could just use more
samples for each i so that∫

p(x2 | x1) p(y1 | x1)
p(y1)

wi
0 p(x1 | xi0) dx1 ≈ 1

N

N∑
j=1

p(x2 | x j1) p(y1 | x j1)
p(y1)

p(x j1 | xi0)
q(x j1 | xi0, y1)

wi
0, 50.

6We recommend computing these weights in log form, since this helps alleviate floating-point underflow.
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where x j1 ∼ q(x1 | xi0, y1). Following similar reasoning as before, we arrive at the following
approximation of the prediction distribution with NM components:

p(x2 | y1) ≈
N∑
j=1

M∑
i=1

w
i, j
1 p(x2 | x j1). 51.

While this is perfectly fine, repeating this approach will ultimately produce an exponential growth
in the number of mixture components. To combat this, we could take a slightly different approach
and use the LLN to approximate both the integral and the sum:

p(x2 | y1) =
M∑
i=1

∫
p(x2 | x1) p(y1 | x1)

p(y1)
wi

0 p(x1 | xi0) dx1. 52.

Introducing the distribution q(x1 | xi0, y1) provides

p(x2 | y1) =
M∑
i=1

∫
p(x2 | x1) p(y1 | x1)

p(y1)
p(x1 | xi0)

q(x1 | xi0, y1)
wi

0 q(x1 | xi0, y1) dx1. 53.

In contrast to the SIS case,where we used a single sample for each i, here we choose to sample both
the index i and x1 jointly; this added flexibility allows the possibility of ignoring certain indices
and concentrating on others of higher utility. It will be important later that we have knowledge of
which index i was sampled. Therefore, we denote the jth sample of i as the integer a j1 to indicate
that this was the jth sample at k = 1; this is called an ancestor index. We sample (a j1, x

j
1) jointly

from

(a j1, x
j
1) ∼ q(a1, x1), 54.

where we choose the joint distribution to be defined as

q(a1, x1) � q(x1 | xa10 , y1)︸ ︷︷ ︸
q(x1 | a1 )

w
a1
0︸︷︷︸

q(a1 )

. 55.

Importantly, we can straightforwardly sample from the joint by first sampling a j1 from the
categorical distribution7

a j1 ∼ q(a1) � Cat({wi
0}Mi=1). 56.

Choosing the index a j1 based on the previous weights {wi
0}Mi=1 is known as resampling. In contrast

to the SIS case, where all indices were explicitly considered, the effect of resampling is to choose
indices at random with a probability proportional to the weights wi

0. One interpretation of this
effect is that resampling concentrates attention to mixture components with higher weights. This
is not always well justified since the utility of a mixture component relates to both the weight wi

0
and the distribution p(x1 | xi0).

Nevertheless, having sampled a j1, we then sample x1 conditioned on a j1 via

x j1 ∼ q
(
x1 | xa

j
1
0 , y1

)
. 57.

7The categorical distribution Cat({wi}Mi=1) is parameterized by the nonnegative numbers wi ≥ 0, with∑M
i=1 wi = 1, and the probability mass P( j = i) = wi. There are many ways to sample from this distribution,

each with slightly different properties (30).
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Using this approach, we arrive at the following approximation by using N samples of (a j1, x
j
1) ∼

q(x1 | xa10 , y1)w
a1
0 :

M∑
i=1

∫
p(x2 | x1) p(y1 | x1)

p(y1)
wi

0 p(x1 | xi0)dx1 ≈ 1
N

N∑
j=1

p(x2 | x j1) p(y1 | x j1)
p(y1)

p(x j1 | xa
j
1
0 )

q(x j1 | xa
j
1
0 , y1)

. 58.

It is common, but not essential, that N = M, which leads to the following approximation for the
prediction distribution:

p(x2 | y1) ≈ 1
M

M∑
i=1

p(x2 | xi1)
p(y1 | xi1)
p(y1)

p(xi1 | xai10 )

q(xi1 | xai10 , y1)
. 59.

Similar to the SIS case, the expression on the right-hand side is not guaranteed to be a distribution
for x2 since it may not have unit area. We can apply the same normalization strategy to arrive at
the normalized weights via

wi
1 �

w̃i
1∑M

j=1 w̃
j
1

, w̃i
1 � p(y1 | xi1)

p(xi1 | xai10 )

q(xi1 | xai10 , y1)
. 60.

Once again, we have that the prediction density is given by

p(x2 | y1) ≈
M∑
i=1

wi
1 p(x2 | xi1). 61.

As with the SIS case, we can therefore repeat the above steps to arrive at the SIR particle filter
provided in Algorithm 1 with the SIR choice.

3.3. The Auxiliary Particle Filter

In the SIR case, we chose the joint distribution according to Equation 55, but this is not essential.
We can, in fact, use any reasonable joint distribution q(a1, x1). This flexibility was first employed
within the auxiliary particle filter (APF) approach (31). In particular,

q(a1, x1) � q(x1 | xa10 , y1)︸ ︷︷ ︸
q(x1 | a1 )

v
a1
0︸︷︷︸

q(a1 )

, 62.

where themain difference compared with Equation 55 is that we allowmore flexibility in choosing
the probability masses vi0 for the indices a1. Following similar reasoning to the SIS and SIR cases,
we arrive at the following mixture approximation of the prediction distribution:

p(x2 | y1) ≈
M∑
i=1

wi
1 p(x2 | xi1), 63.

where the normalized weights for the APF case are

wi
1 �

w̃i
1∑M

j=1 w̃
j
1

, w̃i
1 � p(y1 | xi1)

w
ai1
0 p(xi1 | xai10 )

v
ai1
0 q(xi1 | xai10 , y1)

. 64.

A commonly used choice for the proposal is to set

vi0 = wi
0 p(y1 | xi0), 65.

q(x1 | xi0, y1) = p(x1 | xi0, y1). 66.
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The argument for this choice stems from the fact that8

p(y1 | x1)p(x1 | x0) = p(y1, x1 | x0) = p(y1 | x0)p(x1 | x0, y1). 67.

Therefore,

w̃i
1 = p(y1 | xi1)

p(y1)
w
ai1
0 p(xi1 | xai10 )

v
ai1
0 q(xi1 | xai10 , y1)

= p(y1 | xi1)
p(y1)

w
ai1
0 p(xi1 | xai10 )

w
ai1
0 p(y1 | xai10 ) p(xi1 | xai10 , y1)

= 1
p(y1)

, 68.

which implies that all particles are equally important, and we therefore minimize wasted effort.
This approach is known as the fully adapted APF. In general, it is not possible to compute v0

and draw from q(·) defined in this way, in which case several authors have proposed replacing
p(y1 | x0) and p(x1 | x0, y1) with approximations (31). This leads to the so-called partially adapted
APF. At any rate, we arrive back at another mixture distribution for the prediction density, and the
above can be repeated sequentially to deliver the APF summarized in Algorithm 1 with the APF
choice.

3.4. A Unified View

The above discussion shows that three important variants of the particle filter—SIS, SIR, and
APF—all employMonte Carlo integration to approximate various expectations.These algorithms
may be differentiated on the basis of which part of the expectation they approximate and on
the basis of the proposal they employ. These similarities and differences can be summarized in
Algorithm 1, which highlights that the practical difference in implementation is very subtle. It
essentially reduces to how the so-called ancestor index aik is chosen. In summary, (a) the SIS filter
selects all ancestor indices, even if they are extremely unlikely; (b) the SIR filter chooses ancestor
indices randomly according to the weights wi

k−1; (c) the APF chooses ancestor indices randomly
according to a more flexible set of weights vik−1, and this added flexibility can be exploited to
minimize wasted effort; and (d) all filters allow for the use of a general proposal q(xk | xik, yk ).

Algorithm 1 (unified particle filter: generate particles and weights {xik,wi
k}Mi=1,∀k).

Require:M > 0 and the particle filter variant to use (SIS, SIR, or APF).
for k = 1, . . . , N do

for i = 1, . . . ,M do
if SIS then

Set aik = i and v
aik
k−1 = 1.

else if SIR then
Draw a sample aik according to aik ∼ Cat({w j

k−1}Mj=1) and set v
aik
k−1 = w

aik
k−1.

else if APF then
Draw a sample aik according to aik ∼ Cat({v j

k−1}Mj=1).
end if
Draw a sample xik according to xik ∼ q(xk | xa

i
k
k−1, yk ).

Compute weights w̃i
k according to w̃i

k � p(yk | xik )
w
aik
k−1 p(x

i
k | xa

i
k
k−1 )

v
aik
k−1q(x

i
k | xa

i
k
k−1,yk )

.

end for
Compute normalized weights wi

k = w̃i
k∑M

j=1 w̃
j
k
for i = 1, . . . ,M.

end for

8Using conditional probability and the Markov property.

174 Wills • Schön

A
nn

u.
 R

ev
. C

on
tr

ol
 R

ob
ot

. A
ut

on
. S

ys
t. 

20
23

.6
:1

59
-1

82
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
N

ew
ca

st
le

 o
n 

10
/2

6/
23

. S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



3.5. The Bootstrap Particle Filter

We would be remiss not to mention that choosing the proposal q(xik | xa
i
k
k−1, yk ) as

q(xik | xa
i
k
k−1, yk ) = p(xk | xik−1) 69.

leads to the celebrated bootstrap particle filter, where some terms cancel to reveal

p(xk+1 | y1:k ) ≈ 1
M

M∑
i=1

p(xk+1 | xik )
p(yk | xik )∑M
j=1 p(yk | x jk )︸ ︷︷ ︸

�wi
k

. 70.

3.6. Sequential Monte Carlo Convergence

The convergence of SMC methods has received significant attention (for a full theoretical treat-
ment, see, e.g., 16). In essence, provided that the particle filter can correct errors in the initial state
particles (a type of forgetting behavior), it can be shown that the particle filter converges. To be a
little more specific, we define two expectations, Ik and ÎMk , via

Ik �
∫
ψ (xk ) p(xk | y1:k−1)dxk, ÎMk �

∫
ψ (xk ) p̂M (xk | y1:k−1)dxk, 71.

where p̂M (xk | y1:k−1) denotes theM-particle approximation of the prediction distribution at time
k, and ψ satisfies |ψ (xk )| ≤ 1 for all xk. Then it can be shown that (16)

sup
k≥0

∣∣∣E [
ÎMk

]
− Ik

∣∣∣ ≤ a
M

, sup
k≥0

E
[(
ÎMk − Ik

)2
]

≤ b
M

, 72.

where a and b are constants that do not depend on the number of observationsN; this is the reason
why particle methods can be used in online applications for state estimation.

Unfortunately, while this is promising in terms of the data length N, the same does not neces-
sarily hold for the state dimension nx.When naively implemented, particle filters are known to be
impractical for state dimensions greater than nx ≈ 10 (see, e.g., 26, 27). In short, the main reason
for this is that the terms a and b grow at an exponential rate in the state dimension; this is certainly
the case for a standard implementation of the bootstrap particle filter (27).

This phenomenon is well known to the research community and to practitioners of SMC
methods and has recently received theoretical underpinnings (26, 27). In particular, Rebeschini
& van Handel (27) outlined a theoretical argument for constructing algorithms that do not suffer
from the same exponential growth in state dimension, which fits within the unified presenta-
tion presented in this section. This was the motivation behind the work of Andersson et al. (32),
who employed local SMC methods to adapt the proposal distribution within the broader SMC
framework for large-dimension spatiotemporal systems.

4. PROBLEMS SUCCESSFULLY SOLVED BY SEQUENTIAL
MONTE CARLO METHODS

The aim of this section is to provide a rough overview of problems where SMC has been—and
will most likely continue to be—useful. The problem areas of system identification (Section 4.1)
and state estimation (Section 4.2) are at the heart of both control and robotics, and we will see
in Section 4.3 that SMC is in fact much more generally applicable than most of us thought at
first.
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4.1. System Identification

In system identification, we build mathematical models of dynamical systems from measured data
(33). SMC is a useful component in solving the problem when the dynamics are nonlinear (for
overviews providing ample entry points into this development, see, e.g., 34, 35). The commonly
used maximum likelihood formulation,

θ̂ = argmax
θ

pθ (y1:N ), 73.

requires the likelihood pθ (y1:N )—and often also its derivatives—to be available for evaluation. By
writing the likelihood in the form

pθ (y1:N ) =
∫
pθ (y1:N , x1:N )dx1:N , 74.

we better see its relationship to the latent states. The mathematical motivation for Equation 74
is marginalization, with the interpretation that we average pθ (y1:N , x1:N ) over all possible state
sequences x1:N . Equivalently, we can write

pθ (y1:N ) =
N∏
k=1

pθ (yk | y1:k−1) =
N∏
k=1

∫
pθ (yk | xk )pθ (xk | y1:k−1)dxk, 75.

where y1:0 = ∅. This intractable integral explains why SMC is so natural for maximum likelihood
estimation of the parameters in nonlinear state-space models.When SMC is used to approximate
the likelihood in the integral in Equation 75, it is quite remarkable that the resulting likelihood
estimate is in fact unbiased (16, 36). However, it is still a stochastic quantity, implying that the
resulting optimization problem in Equation 73 is stochastic.

One way around this stochastic optimization problem is to make use of the expectation
maximization algorithm (37), which amounts to iteratively solving

θi+1 = argmax
θ

∫
ln pθ (x1:N , y1:N )pθi (x1:N | y1:N )dx1:N 76.

for i = 1, 2, . . . , initialized as θ0. The sequence {θi}i≥0 computed in this way is guaranteed to not
decrease the log-likelihood (37) [i.e., ln pθi+1 (y1:N ) ≥ ln pθi (y1:N )], which explains why expectation
maximization can be used in solvingmaximum likelihood problems.The additional challenge with
the formulation in Equation 76 is that the smoothing distribution pθi (x1:N | y1:N ) is not available
in closed form, but we can employ SMC-based methods to approximate this quantity, effectively
replacing the integral with the following tractable sum over all particles:

θi+1 = argmax
θ

M∑
i=1

wi ln pθ (xi1:N , y1:N ). 77.

The particles {xi1:N }Mi=1 and their weights {wi
1:N }Mi=1 are computed for a model parameterized by the

current iteration θi. Details on this solution are available in papers by Olsson et al. (38) and Schön
et al. (39) and were later further improved by Lindholm & Lindsten (40).

A more direct solution to the maximum likelihood problem is to acknowledge its stochastic
nature in the first place and make use of stochastic optimization algorithms. These algorithms
have—due to their importance in solving deep learning problems—experienced a good develop-
ment over the past decade (see, e.g., 41). Stochastic optimization algorithms rely on a Markov
chain of the form

θi+1 = θi + αidi, 78.
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providing an iterative updating mechanism for the parameters. Here, di is the search direction,
and αi > 0 denotes the so-called step length, also referred to as the learning rate. Wills & Schön
(42) developed a second-order stochastic optimization algorithm specifically tailored for nonlinear
system identification using SMC.

The joint distribution of all random variables used in the model—sometimes referred to as the
full probabilistic model—within the maximum likelihood formulation is given by

pθ (x1:N , y1:N ) =
N∏
k=1

pθ (yk | xk )︸ ︷︷ ︸
observation

N∏
k=1

pθ (xk | xk−1)︸ ︷︷ ︸
dynamics

pθ (x1), 79.

where the latent states follow a prior distribution according to model specification. The maxi-
mum likelihood formulation implies that we assume the unknown parameters θ to be modeled as
deterministic variables. Depending on the problem setting, a Bayesian formulation (21) might be
more useful. Here, the unknown parameters are instead modeled as random variables, implying
that we need to complement the model with an assumption of this prior p(θ) as well. The full
probabilistic model is now instead given by p(x1:N , y1:N , θ) = p(x1:N , y1:N | θ)p(θ), where the first
term is—with a slight change of notation—given in Equation 79. The goal is then to compute the
posterior distribution

p(θ | y1:k ) = p(y1:k | θ)p(θ)
p(y1:k )

. 80.

The first thing to note is that the likelihood p(y1:k | θ) takes center stage in the Bayesian for-
mulation as well. Over the past decade, we have seen a most interesting and useful development
when it comes to Bayesian solutions based on SMC.To a large extent, this all started with the par-
ticle Markov chain Monte Carlo (MCMC) construction (43). Andrieu et al. (43) introduced both
Metropolis–Hastings (44, 45) and Gibbs (46) constructions. The resultingMCMC algorithms are
exact in the sense that the target distribution of interest—typically p(θ | y1:N ) or pθ (x1:N | y1:N )—is
the stationary distribution of the Markov chain, even though it makes use of an SMC-based ap-
proximation of the likelihood in evaluating the acceptance probability. This has resulted in the
somewhat peculiar but descriptive term for this class of algorithms, namely exact approximations.

The particle Metropolis–Hastings sampler makes use of SMC to guide a Metropolis–Hastings
method through the parameter space (for a tutorial introduction, see 47). Slightlymore specifically,
it makes use of a nonnegative and unbiased likelihood estimate provided by SMC, which is a
version of pseudomarginal Metropolis–Hastings (48) applied to this particular setting. A possibly
underappreciated fact is that the particle Metropolis–Hastings algorithm provides a solution to
the smoothing problem as well.

When it comes to the particle Gibbs construction, SMC is used as a high-dimensional proposal
mechanism on the space of state trajectories x1:N . The original particle Gibbs construction has
been improved via the addition of a so-called ancestor sampling step (49).

4.2. State Estimation

We have already discussed aspects of the state estimation problem to a great extent in the earlier
sections of this review, via the practical example in Section 2, after which we used the nonlinear
filtering problem to derive the SMC method in Section 3. The information about the state is
represented using probability density functions of the form p(xr:k | y1:s ). Depending on the rela-
tionships between the time indices r, k, and s, this problem falls into one of three main categories:
filtering, prediction, or smoothing. Table 1 provides a more detailed enumeration of the most
commonly encountered state inference problems.
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Table 1 Commonly used filtering and smoothing densitiesa

Name Notation
Marginal filtering p(xk | y1:k )
Joint filtering p(x1:k | y1:k ), k = 0, 1, . . . ,N − 1
Prediction p(xk+1 | y1:k )
l-step prediction p(xk+l | y1:k ), l ≥ 1
Joint smoothing p(x1:N | y1:N )
Marginal smoothing (k ≤ N) p(xk | y1:N )
Fixed-interval smoothing (s < k ≤ N) p(xs:k | y1:N )
Fixed-lag smoothing (l fixed) p(xk−l+1:k | y1:k )

aThese densities may appear either on their own or as components in a larger algorithm.

When it comes to smoothing, the joint smoothing density p(x1:N | y1:N ) is the main object we
are after. The other smoothing solutions are marginal densities with respect to this density. One
of the most commonly used strategies for computing smoothing solutions is to first run a (for-
ward) filter and then perform a backwards pass to carry the information from the future backward
in time. An early and well-used example of this strategy is provided by the Rauch–Tung–Striebel
smoother (50) for linear Gaussian state-space models. The equivalent idea for particle filters was
introduced in 2000 (51), but it was not practical due to its high computational cost. However,
since then we have seen very useful developments—in particular, when it comes to backward sim-
ulation, relying on a backward pass, where the states are simulated backward in time, resulting in
(uncorrelated) samples from p(x1:N | y1:N ). Lindsten & Schön (52) provided a tutorial introduction
to the backward simulation idea.

Since the introduction of the particle MCMC construction (43) roughly a decade ago, we have
seen the emergence of a completely different class of very capable smoothing algorithms—namely,
those based on carefully engineered Markov kernels. The idea is to run SMC methods within
an outer MCMC construction, implying an iterative algorithm. Svensson et al. (53) provided a
concrete example of such a construction.

4.3. Sequential Monte Carlo Is Generally Applicable

SMC is useful not only when it comes to nonlinear state-spacemodels, but also for a much broader
class of models. It can be used whenever the model contains a sequential structure, be it natural or
artificial. Concrete examples include the class of probabilistic graphical models (54) and the even
more general programmatic model (55) offered by probabilistic programming languages (56).The
combined use of variational inference (57) and SMC has also seen useful developments recently
(see, e.g., 58–60).Naesseth et al. (10) provided a tutorial introduction to SMC in this more general
setting.

5. CONCLUSIONS AND FUTURE WORK

While the use of SMC to solve nonlinear filtering and system identification problems is starting
to mature, its use in more general settings is only just starting to emerge. In this article, we have
focused on providing a nonstandard and hopefully intuitive presentation of the SMC method
when it is used to solve the nonlinear filtering problem.

A clear trend is that SMC methods are increasingly being used as components in various
larger (often iterative) algorithms. Examples include Bayesian learning, where SMC is used
within an MCMC algorithm (43); iterated filtering (61); maximum likelihood using stochastic
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optimization (42); maximum likelihood via expectation maximization (39); and more elaborate
blends of variational inference and SMC (58–60), to name a few.

A rewarding way forward is likely offered by the two main design choices of SMC—the inter-
mediate target distributions and the proposal distribution—which pave the way for new algorithm
development. By multiplying the intermediate target in each step by a so-called twisting potential,
one can utilize this design freedom to obtain a better approximation (62). Here, there are inter-
esting possibilities in the use of deterministic algorithms to approximate the twisting potential.
While algorithms based on variational inference are fast, the resulting estimates suffer from bi-
ases that are hard to quantify. The Monte Carlo methods are the other way around, in that they
enjoy asymptotic consistency and are well supported by theory but can instead suffer from a high
computational cost. Hence, it is natural to follow the path started by Maddison et al. (58), Naes-
seth et al. (59), and Le et al. (60) and develop solutions that blend variational inference and SMC
to achieve fast algorithms with theoretical guarantees.

Various deep architectures have recently also proved highly useful when it comes to nonlinear
dynamics [see, e.g., the ordinary differential equation variational autoencoder (ODE2VAE) (63)
and Kalman variational autoencoder (64) constructions]. Including SMC in this setting is, natu-
rally, an interesting next step.Themain roadblock is arguably the fact that the essential resampling
step is not differentiable with respect to the model and SMC parameters. However, recent devel-
opments (65) have introduced a first differentiable particle filter, effectively opening the way for
end-to-end training.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

We would like to acknowledge the very kind feedback and support from Dr. Alejandro Donaire,
Dr. Christopher Renton, Dr. Jack Umenberger, and Dr. Johannes Hendriks. This research was
financially supported by the projects NewLEADS – New Directions in Learning Dynamical Sys-
tems (contract 621-2016-06079) and Deep Probabilistic Regression – NewModels and Learning
Algorithms (contract 2021-04301), both funded by the Swedish Research Council and the Kjell
and Märta Beijers Foundation.

LITERATURE CITED

1. Thrun S, Burgard W, Fox D. 2005. Probabilistic Robotics. Cambridge, MA: MIT Press
2. Duncan S, Gyöngy M. 2006. Using the EM algorithm to estimate the disease parameters for small-

pox in 17th century London. In 2006 IEEE International Conference on Control Applications, pp. 3312–17.
Piscataway, NJ: IEEE

3. Jazwinski AH. 1970. Stochastic Processes and Filtering Theory. New York: Academic
4. Smith GL, Schmidt SF, McGee LA. 1962. Application of statistical filter theory to the optimal estimation

of position and velocity on board a circumlunar vehicle. Tech. Rep. TR R-135, Natl. Aeronaut. Space Adm.,
Washington, DC

5. Julier SJ, Uhlmann JK. 2004. Unscented filtering and nonlinear estimation. Proc. IEEE 92:401–22
6. Gordon NJ, Salmond DJ, Smith AFM. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state

estimation. IEE Proc. F 140:107–13
7. KitagawaG.1993.AMonteCarlo filtering and smoothingmethod for non-Gaussian nonlinear state space

models. In Proceedings of the 2nd US-Japan Joint Seminar on Statistical Time Series Analysis, pp. 110–31.N.p.

www.annualreviews.org • Sequential Monte Carlo 179

A
nn

u.
 R

ev
. C

on
tr

ol
 R

ob
ot

. A
ut

on
. S

ys
t. 

20
23

.6
:1

59
-1

82
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
N

ew
ca

st
le

 o
n 

10
/2

6/
23

. S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



8. Stewart L, McCarty P. 1992. The use of Bayesian belief networks to fuse continuous and discrete in-
formation for target recognition and discrete information for target recognition, tracking, and situation
assessment. In Signal Processing, Sensor Fusion and Target Recognition, ed.V Libby, I Kadar pp. 177–85. Proc.
SPIE 1699. Bellingham,WA: SPIE

9. Doucet A, Johansen AM. 2011. A tutorial on particle filtering and smoothing: fifteen years later. In
Nonlinear Filtering Handbook, ed. D Crisan, B Rozovsky, pp. 656–704. Oxford, UK: Oxford Univ. Press

10. Naesseth AC, Lindsten F, Schön TB. 2019. Elements of sequential Monte Carlo. Found. Trends Mach.
Learn. 12:307–92

11. Cappé O,Godsill S,Moulines E. 2007. An overview of existing methods and recent advances in sequential
Monte Carlo. Proc. IEEE 95:899–924

12. Chopin N, Papaspiliopoulos O. 2020. An Introduction to Sequential Monte Carlo. Cham, Switz.: Springer
13. Särkkä S. 2013. Bayesian Filtering and Smoothing. Cambridge, UK: Cambridge Univ. Press
14. Douc R, Moulines E, Stoffer D. 2014. Nonlinear Time Series: Theory, Methods, and Applications with R

Examples. Boca Raton, FL: CRC
15. Cappé O, Moulines E, Rydén T. 2005. Inference in Hidden Markov Models. Berlin: Springer
16. Del Moral P. 2004. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications.

New York: Springer
17. Endo A, van Leeuwen E, Baguelin M. 2019. Introduction to particle Markov chain Monte Carlo for

disease dynamics modellers. Epidemics 29:100363
18. Naesseth AC, Lindsten F, Schön TB. 2019. High-dimensional filtering using nested sequential Monte

Carlo. IEEE Trans. Signal Process. 67:4177–88
19. Davey S, Gordon N, Holland I, Rutten M, Williams J. 2016. Bayesian Methods in the Search for MH370.

Singapore: Springer
20. Gut A. 1995. An Intermediate Course in Probability. New York: Springer
21. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. 2013. Bayesian Data Analysis. Boca

Raton, FL: CRC. 3rd ed.
22. Perot A, Fabry C. 1899.On the application of interference phenomena to the solution of various problems

of spectroscopy and metrology. Astrophys. J. 9:87
23. Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, et al. 2016. Observation of gravitational

waves from a binary black hole merger. Phys. Rev. Lett. 116:061102
24. Fricke TT. 2011. Homodyne detection for laser-interferometric gravitational wave detectors. PhD Thesis, La.

State Univ., Baton Rouge
25. Hariharan P. 2010. Basics of Interferometry. Amsterdam: Elsevier
26. Snyder C, Bengtsson T, Bickel P, Anderson J. 2008.Obstacles to high-dimensional particle filtering.Mon.

Weather Rev. 136:4629–40
27. Rebeschini P, van Handel R. 2015. Can local particle filters beat the curse of dimensionality? Ann. Appl.

Probab. 25:2809–66
28. Kailath T, Sayed AH, Hassibi B. 2000. Linear Estimation. Upper Saddle River, NJ: Prentice Hall
29. Doucet A, de Freitas N, Gordon N, ed. 2001. Sequential Monte Carlo Methods in Practice. New York:

Springer
30. Hol J, Schön TB, Gustafsson F. 2006. On resampling algorithms for particle filters. In 2006 IEEE

Nonlinear Statistical Signal Processing Workshop, pp. 79–82. Piscataway, NJ: IEEE
31. Pitt MK, Shephard N. 1999. Filtering via simulation: auxiliary particle filters. J. Am. Stat. Assoc. 94:590–99
32. Andersson C, Ribeiro AH, Tiels K, Wahlström N, Schön TB. 2019. Deep convolutional networks in

system identification. In 2019 IEEE 58th Conference on Decision and Control, pp. 3670–76. Piscataway, NJ:
IEEE

33. Ljung L. 1999. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice Hall. 2nd ed.
34. Schön TB, Lindsten F, Dahlin J,Wågberg J, Naesseth AC, et al. 2015. Sequential Monte Carlo methods

for system identification. IFAC-PapersOnLine 48(28):775–86
35. Kantas N, Doucet A, Singh SS, Maciejowski JM, Chopin N. 2015. On particle methods for parameter

estimation in state-space models. Stat. Sci. 30:328–51
36. Pitt MK, dos Santos Silva R, Giordani R, Kohn R. 2012. On some properties of Markov chain Monte

Carlo simulation methods based on the particle filter. J. Econom. 171:134–51

180 Wills • Schön

A
nn

u.
 R

ev
. C

on
tr

ol
 R

ob
ot

. A
ut

on
. S

ys
t. 

20
23

.6
:1

59
-1

82
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
N

ew
ca

st
le

 o
n 

10
/2

6/
23

. S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



37. Dempster A, Laird N, Rubin D. 1977. Maximum likelihood from incomplete data via the EM algorithm.
J. R. Stat. Soc. B 39:1–38

38. Olsson J, Douc R, Cappé O, Moulines E. 2008. Sequential Monte Carlo smoothing with application to
parameter estimation in nonlinear state-space models. Bernoulli 14:155–79

39. Schön TB, Wills A, Ninness B. 2011. System identification of nonlinear state-space models. Automatica
47:39–49

40. Lindholm A, Lindsten F. 2019. Learning dynamical systems with particle stochastic approximation EM.
arXiv:1806.09548 [stat.CO]

41. Bottou L, Curtis FE, Nocedal J. 2018. Optimization methods for large-scale machine learning. SIAM
Rev. 60:223–311

42. Wills AG, Schön TB. 2021. Stochastic quasi-Newton with line-search regularisation. Automatica
127:109503

43. Andrieu C, Doucet A, Holenstein R. 2010. Particle Markov chain Monte Carlo methods. J. R. Stat. Soc.
B 72:269–342

44. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. 1953. Equations of state
calculations by fast computing machine. J. Chem. Phys. 21:1087–92

45. Hastings WK. 1970. Monte Carlo simulation methods using Markov chains and their applications.
Biometrica 57:97–109

46. Geman S, Geman D. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6:721–41

47. Schön TB, Svensson A, Murray LM, Lindsten F. 2018. Probabilistic learning of nonlinear dynamical
systems using sequential Monte Carlo.Mech. Syst. Signal Process. 104:866–83

48. Andrieu C, Roberts GO. 2009. The pseudo-marginal approach for efficient Monte Carlo computations.
Ann. Stat. 37:697–725

49. Lindsten F, Jordan MI, Schön TB. 2014. Particle Gibbs with ancestor sampling. J. Mach. Learn. Res.
15:2145–84

50. Rauch HE, Tung F, Striebel CT. 1965. Maximum likelihood estimates of linear dynamic systems. AIAA
J. 3:1445–50

51. Doucet A, Godsill SJ, Andrieu C. 2000. On sequential Monte Carlo sampling methods for Bayesian
filtering. Stat. Comput. 10:197–208

52. Lindsten F, Schön TB. 2013. Backward simulation methods for Monte Carlo statistical inference. Found.
Trends Mach. Learn. 6:1–143

53. Svensson A, Schön TB, Kok M. 2015. Nonlinear state space smoothing using the conditional particle
filter. IFAC-PapersOnLine 48(28):975–80

54. Naesseth AC, Lindsten F, Schön TB. 2014. Sequential Monte Carlo for graphical models. In Advances
in Neural Information Processing Systems 27, ed. Z Ghahramani, M Welling, C Cortes, N Lawrence,
KQ Weinberger, pp. 1862–70. Red Hook, NY: Curran

55. Murray LM, Schön TB. 2018. Automated learning with a probabilistic programming language: Birch.
Annu. Rev. Control 46:29–43

56. Wood F, Meent JW, Mansinghka V. 2014. A new approach to probabilistic programming inference.
In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, ed. S Kaski,
J Corander, pp. 1024–32. Proc. Mach. Learn. Res. 33. N.p.: PMLR

57. Blei D, Kucukelbir A,McAuliffe J. 2017. Variational inference: a review for statisticians. J. Am. Stat. Assoc.
112:859–77

58. Maddison CJ, Lawson J, Tucker G, Heess N, Norouzi M, et al. 2017. Filtering variational objectives. In
Advances in Neural Information Processing Systems 30, ed. I Guyon, U Von Luxburg, S Bengio, H Wallach,
R Fergus, et al., pp. 6574–84. Red Hook, NY: Curran

59. Naesseth AC,Linderman S,Ranganath R,Blei D. 2018.Variational sequentialMonteCarlo. In Proceedings
of the Twenty-First International Conference on Artificial Intelligence and Statistics, ed.A Storkey,F Perez-Cruz,
pp. 968–77. Proc. Mach. Learn. Res. 84. N.p.: PMLR

60. Le TA, Igl M, Rainforth T, Jin T,Wood F. 2018. Auto-encoding sequential Monte Carlo. In Proceedings
of the 2018 International Conference on Learning Representations. La Jolla, CA: Int. Conf. Learn. Represent.
https://openreview.net/pdf?id=BJ8c3f-0b

www.annualreviews.org • Sequential Monte Carlo 181

A
nn

u.
 R

ev
. C

on
tr

ol
 R

ob
ot

. A
ut

on
. S

ys
t. 

20
23

.6
:1

59
-1

82
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
N

ew
ca

st
le

 o
n 

10
/2

6/
23

. S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 

https://openreview.net/pdf?id=BJ8c3f-0b


61. Ionides EL, Bhadra A, Atchadé Y, King AA. 2011. Iterated filtering. Ann. Stat. 39:1776–802
62. Guarniero P, Johansen AM,Lee A. 2016.The iterated auxiliary particle filter. J. Am. Stat. Assoc. 112:1636–

47
63. Yildiz C, Heinonen M, Lahdesmaki H. 2019. ODE2VAE: deep generative second order ODEs with

Bayesian neural networks. In Advances in Neural Information Processing Systems 32, ed. H Wallach,
H Larochelle, A Beygelzimer, F d’Alché-Buc, E Fox, R Garnett, pp. 13366–75. Red Hook, NY: Curran

64. FraccaroM,Kamronn S,Paquet U,WintherO. 2017.A disentangled recognition and nonlinear dynamics
model for unsupervised learning. In Advances in Neural Information Processing Systems 30, ed. I Guyon,
U Von Luxburg, S Bengio, H Wallach, R Fergus, et al., pp. 3602–11. Red Hook, NY: Curran

65. Corenflos A, Thornton J, Deligiannidis G, Doucet A. 2021. Differentiable particle filtering via entropy-
regularized optimal transport. In Proceedings of the 38th International Conference on Machine Learning, ed.
M Meila, T Zhang, pp. 2100–11. Proc. Mach. Learn. Res. 139. N.p.: PMLR

66. Ersbo P. 2018. Displacement estimation for homodyne Michelson interferometers based on particle filtering. MS
Thesis, Uppsala Univ., Uppsala, Swed.

182 Wills • Schön

A
nn

u.
 R

ev
. C

on
tr

ol
 R

ob
ot

. A
ut

on
. S

ys
t. 

20
23

.6
:1

59
-1

82
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
N

ew
ca

st
le

 o
n 

10
/2

6/
23

. S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



AS06_TOC ARjats.cls January 25, 2023 10:59

Annual Review of
Control, Robotics,
and Autonomous
Systems

Volume 6, 2023

Contents

An Overview of Soft Robotics
Oncay Yasa, Yasunori Toshimitsu, Mike Y. Michelis, Lewis S. Jones,
Miriam Filippi, Thomas Buchner, and Robert K. Katzschmann � � � � � � � � � � � � � � � � � � � � � � � � � � 1

Soft Actuators and Robots Enabled by Additive Manufacturing
Dong Wang, Jinqiang Wang, Zequn Shen, Chengru Jiang, Jiang Zou,
Le Dong, Nicholas X. Fang, and Guoying Gu � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �31

Adaptive Control and Intersections with Reinforcement Learning
Anuradha M. Annaswamy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �65

On the Timescales of Embodied Intelligence for Autonomous
Adaptive Systems
Fumiya Iida and Fabio Giardina � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �95

Toward a Theoretical Foundation of Policy Optimization for
Learning Control Policies
Bin Hu, Kaiqing Zhang, Na Li, Mehran Mesbahi, Maryam Fazel,
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